Convex relaxations for mixed integer predictive control
نویسندگان
چکیده
The main objective in this work is to compare different convex relaxations for Model Predictive Control (MPC) problems with mixed real valued and binary valued control signals. In the problem description considered, the objective function is quadratic, the dynamics are linear, and the inequality constraints on states and control signals are all linear. The relaxations are related theoretically and the quality of the bounds and the computational complexities are compared in numerical experiments. The investigated relaxations include the Quadratic Programming (QP) relaxation, the standard Semidefinite Programming (SDP) relaxation, and an equality constrained SDP relaxation. The equality constrained SDP relaxation appears to be new in the context of hybrid MPC and the result presented in this work indicates that it can be useful as an alternative relaxation, which is less computationally demanding than the ordinary SDP relaxation and which often gives a better bound than the bound from the QP relaxation. Furthermore, it is discussed how the result from the SDP relaxations can be used to generate suboptimal solutions to the control problem. Moreover, it is also shown that the equality constrained SDP relaxation is equivalent to a QP in an important special case.
منابع مشابه
Semidefinite relaxations for non-convex quadratic mixed-integer programming
We present semidefinite relaxations for unconstrained nonconvex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for mediumsized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We us...
متن کاملA hierarchy of relaxations for nonlinear convex generalized disjunctive programming
We propose a framework to generate alternative mixed-integer nonlinear programming formulations for disjunctive convex programs that lead to stronger relaxations. We extend the concept of “basic steps” defined for disjunctive linear programs to the nonlinear case. A basic step is an operation that takes a disjunctive set to another with fewer number of conjuncts. We show that the strength of th...
متن کاملConvex quadratic relaxations for mixed-integer nonlinear programs in power systems
Abstract This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an in...
متن کاملA Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems
This paper is concerned with the generation of tight equivalent representations for mixedinteger zero-one programming problems. For the linear case, we propose a technique which first converts the problem into a nonlinear, polynomial mixed-integer zero-one problem by multiplying the constraints with some suitable d-degree polynomial factors involving the n binary variables, for any given d E (0...
متن کاملConvex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 46 شماره
صفحات -
تاریخ انتشار 2010